Math 247A Lecture 12 Notes

Daniel Raban

February 3, 2020

1 Calderón-Zygmund Decomposition and Bounds for the Vector-Valued Maximal Function

1.1 A Calderón-Zygmund decomposition

Lemma 1.1 (A Calderón-Zygmund decomposition). If $f \in L^1(\mathbb{R}^d)$ and $\lambda > 0$, then we can decompose f = g + b such that

- 1. $|g(x)| \leq \lambda$ for almost every $x \in \mathbb{R}^d$.
- 2. supp b is a union of cubes whose interiors are pairwise disjoint and

$$\lambda < \frac{1}{|Q_k|} \int_{Q_k} |b(x)| \, dx \le 2^d \lambda.$$

3.
$$g = f[1 - \mathbb{1}_{|Q_k|}].$$

Remark 1.1. 1. Interpolating between the first conclusion and $g \in L^1$, we get $g \in L^p$ for all $1 \le p \le \infty$.

2.
$$\sum_{k} |Q_{k}| \sim \frac{1}{\lambda} \sum_{k} \int_{Q_{k}} |b(y)| dy$$
, so $\sum_{k} |Q_{k}| \lesssim \frac{1}{\lambda} ||f||_{L^{1}}$.

Remark 1.2. Modifying g further, we can ensure that $\int_{Q_k} b(y) dy = 0$ for all k. Indeed, let

$$g(x) = \begin{cases} f(x) & x \notin \bigcup_k Q_k \\ \frac{1}{|Q_k|} \int_{Q_k} f(y) \, dy & x \in Q_k. \end{cases}$$

Then for $x \in Q_k$,

$$b(x) = f(x) - \frac{1}{|Q_k|} \int_{Q_k} f(y) \, dy,$$

SO

$$\int_{Q_k} b(x) \, dx = \int_{Q_k} f(x) \, dx - \int_{Q_k} f(y) \, dy = 0.$$

We lose a factor of 2 for the constant:

$$\frac{1}{|Q_k|} \int_{Q_k} |b(x)| \, dx \leq \frac{2}{|Q_k|} \int_{Q_k} |f(x)| \, dx \leq 2^{d+1} \lambda.$$

The price we have to pay is that $|g(x)| \leq 2^d \lambda$ instead of λ .

Proof. Decompose \mathbb{R}^d into dyadic cubes $Q = [2^n k_1, 2^n (k_1 + 1)] \times \cdots \times [2^n k_d, 2^n (k_d + 1)]$, where n is sufficiently large so that

$$\frac{1}{|Q|} \int_{Q} |f(y)| \, dy \le \lambda$$

Fix such a Q and subdivide it into 2^d congruent cubes (cut each side in half). Let Q' denote one of the resulting children.

- If $\frac{1}{|Q'|} \int_{Q'} |f(y)| dy > \lambda$, stop and add Q' to the collection Q_k .
- If $\frac{1}{|Q'|} \int_{Q'} |f(y)| dy \leq \lambda$, then continue subdividing until (if ever) we are forced into case 1.

If we are in case 1, then

$$\lambda < \frac{1}{|Q'|} \int_{Q'} |f(y)| \, dy \le \frac{2^d}{|Q|} \int_{Q} |f(y)| \, dy \le 2^d \lambda.$$

It remains to show that $g=f[1-\mathbbm{1}_{\bigcup Q_k}]$ satisfies $|g|\leq \lambda$ a.e. Fix a Lebesgue point $x\notin \bigcup Q_k$ for f. Then

$$\left| \frac{1}{|Q|} \int_{Q} f(y) \ dy - f(x) \right| \le \frac{1}{|Q|} \int_{Q} |f(y) - f(x)| \ dx$$

for any cube, we can inscribe a ball in side it and we can circumscribe a ball around it. Letting $r \sim \text{diam}(Q)$,

$$\lesssim \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f(x)| dx$$

$$\xrightarrow{r \to \infty} 0$$

So

$$f(x) = \lim_{\substack{x \ni Q \\ \operatorname{diam} Q \to 0}} \frac{1}{|Q|} \int_Q f(y) \, dy,$$

and we get $|g(x)| = |f(x)| \le \lambda$.

1.2 Weak-type bound for the vector-valued maximal function

Recall that for $f: \mathbb{R}^d$ to ℓ^2 with $f = \{f_n\}_{n \geq 1}$, the **vector-valued maximal function** is

$$\overline{M}f(x) = \|\{Mf_n\}_{n \ge 1}\|_{\ell^2}.$$

Theorem 1.1.

- 1. \overline{M} is of weak-type (1,1).
- 2. For $1 , <math>\overline{M}$ is of strong type (p, p).

Proof. Last time, we remarked that we need only prove part 1. Fix $f \in L^1$ and $\lambda > 0$. We want to show that

$$|\{x: \overline{M}f(x) > \lambda\}| \lesssim \frac{\|f\|_{L^1}}{\lambda}.$$

Decompose f = g + b with $|g| \le \lambda$ a.e., supp $b = \bigcup_k Q_k$, and $\frac{1}{|Q_k|} \int_{Q_k} f|b(y)| dy \sim \lambda$. Then

$$|\{x: \overline{M}f(x) > \lambda\}| \le |\{x: \overline{M}g(x) > \lambda/2\}| + |\{x: \overline{M}b(x) > \lambda/2\}|.$$

By Chebyshev,

$$|\{x: \overline{M}g(x) > \lambda/2\}| \lesssim \frac{\|\overline{M}g\|_2^2}{\lambda^2} \lesssim \frac{\|g\|_2^2}{\lambda^2} \lesssim \frac{\lambda \|g\|_{L^1}}{\lambda^2} \lesssim \frac{\|f\|_{L^1}}{\lambda}.$$

It is left to show that

$$|\{x: \overline{M}b(x) > \lambda/2\}| \lesssim \frac{\|f\|_{L^1}}{\lambda}.$$

We have

$$\sum_{k} |2Q_k| \le 2^d \sum_{k} |Q_k| \sim \sum_{k} \frac{1}{\lambda} \int_{Q_k} |b(y)| \, dy \lesssim \frac{\|f\|_{L^1}}{\lambda}.$$

We have to show now that

$$|\{x \in [\bigcup (2Q_k)]^c : \overline{M}b(x) > \lambda/2\}| \lesssim \frac{\|f\|_{L^1}}{\lambda}.$$

For $x \notin \bigcup (2Q_k)$,

$$Mb_n(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |b_n(y)| \, dy$$
$$= \sup_{r>0} \frac{1}{|B(x,r)|} \sum_k \int_{B(x,r)\cap Q_k} |b_n(y)| \, dy$$

If $B(x,r) \cap Q_k \neq \emptyset$, then $r > \ell(Q_k)/2$. So $Q_k \subseteq B(x,r+\sqrt{d}\ell(Q_k)) \subseteq B(x,r(1+2\sqrt{d}))$.

$$\leq_d \sup_{r>0} \frac{1}{|B(x, r(1+2\sqrt{d}))|} \sum_k \int_{B(x, r(1+2\sqrt{d}))} |b_n(y)| \, dy$$

$$\lesssim \sup_{r>0} \frac{1}{|B(x,r(1+2\sqrt{d}))|} \int_{B(x,r(1+2\sqrt{d}))} \sum_k \mathbbm{1}_{Q_k}(z) \left(\frac{1}{|Q_k|} \int_{Q_k} |b_n(y)| \, dy\right) \, dz.$$

Let $b_n^{\text{avg}} = \sum \mathbbm{1}_{Q_k} \frac{1}{|Q_k|} \int_{Q_k} |b_n(y)| \, dy$. Then we have

$$Mb_n(x) \lesssim Mb_n^{\text{avg}}(x).$$

Let $b^{\text{avg}} = \{b_n^{\text{avg}}\}_{n \ge 1}$. For $x \in Q_k$,

$$|b^{\text{avg}}(x)| = \|\{b_n^{\text{avg}}(x)\}_n\|_{\ell^2} \le \frac{1}{|Q_k|} \int_{Q_k} |b(y)| \, dy \lesssim \lambda.$$

We also have

$$||b^{\text{avg}}||_{L^1} = \sum_{k} \int_{Q_k} |b(y)| \, dy \lesssim ||f||_{L^1}.$$

By Chebyshev, since $\overline{M}b(x) \lesssim Mb^{\text{avg}}(x)$,

$$|\{x \in [\bigcup (2Q_k)]^c : \overline{M}b(x) > \lambda/2\}| \lesssim |\{x \in [\bigcup (2Q_k)]^c : \overline{M}b^{\text{avg}} \gtrsim\}|$$

$$\lesssim \frac{1}{\lambda^2} ||\overline{M}b^{\text{avg}}||_{L^2}^2$$

$$\lesssim \frac{\|b^{\text{avg}}\|_{L^2}^2}{\lambda^2}$$

$$\lesssim \frac{\|b^{\text{avg}}\|_{L^1}}{\lambda} \lesssim \frac{\|f\|_{L^1}}{\lambda}.$$

Remark 1.3. One can replace ℓ^2 by ℓ^q for $1 < q \le \infty$ for $f : \mathbb{R}^d$ toell^q. Define

$$\overline{M}_q f(x) = \|\{M f_n(x)\}_{n \ge 1}\|_{\ell^q}.$$

Then

- 1. \overline{M}_q is of weak-type (1,1).
- 2. \overline{M}_q is of strong type (p,p) for all 1 .

The proof is as in the case q=2 if $1 < q < \infty$. The trivial estimate becomes that $\overline{M}_q: L^q \to L^q$ is bounded. If $q=\infty$,

$$\overline{M}_{\infty} f \le M \| \{f_n\}_{n \ge 1} \|_{\ell^{\infty}}.$$

The estimates follow from the scalar case.

If q = 1, then these estimates fail. We will see an example next time.